

Reconstruction du ciel en 3D à l'aide de caméras hémisphériques filmant le ciel

Parties prenantes

Auteurs

Jérémy Buchholtzer **Philippe Blanc Pierre Massip**

Centre O.I.E. **Observation, Impacts, Energie Sophia Antipolis**

Partenaires

Projet

- Projet en partenariat avec EDF R&D dont le but est de prédire à très court terme la production d'énergie d'origine photovoltaïque à la Réunion pour optimiser la gestion du système électrique de l'île.
- L'objectif est de prévoir le rayonnement direct et diffus sur les panneaux solaires à l'aide de deux caméras hémisphériques (fish-eye) qui filment le ciel pour ensuite faire le lien avec la production électrique.
- Une précédente étude a déjà établi un lien entre les images issues d'une caméra et les mesures pyranométriques associées [1].
- Ce travail s'appuie sur les données d'une station météorologique complète de très grande qualité installée à la réunion par EDF R&D en 2011 (cf. photo à droite) [2].

Station météorologique à la réunion

Méthode

Principales étapes

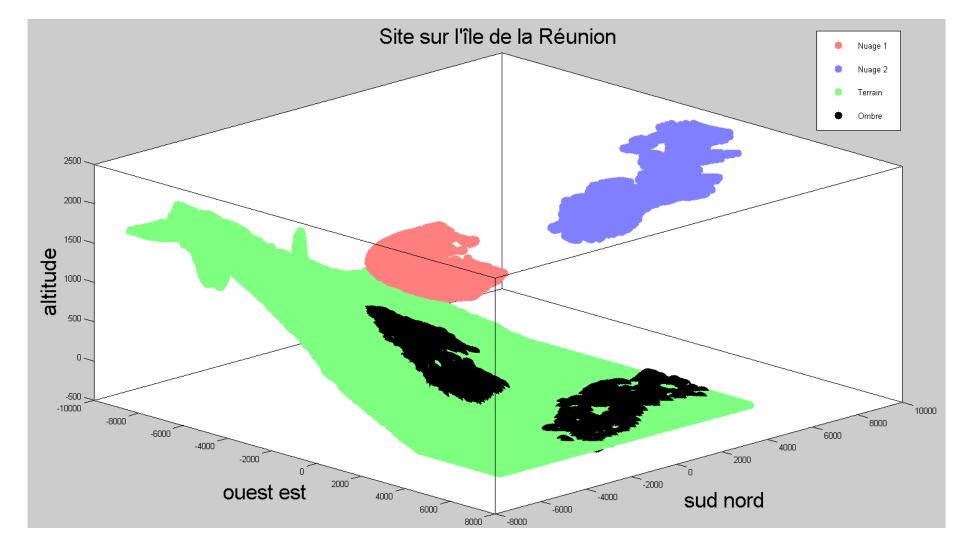

- Calibration des caméras pour lier chaque pixel à une direction de visée en azimut et élévation.
- Segmentations permettant de détecter les nuages dans chacune des images.
- Mise en correspondance de pixels entre les images à l'aide de techniques de corrélation ou de SIFT (Scale Invariant Feature Transform).
- Estimation de la hauteur des nuages obtenue par stéréophotogrammétrie.
- Détermination de l'ombre portée des différents nuages sur la centrale photovoltaïque (connaissant la position angulaire du Soleil)

Image du ciel prise avec la caméra

Résultats préliminaires

Vision en 3D de la scène

Représentation de la scène en 3D

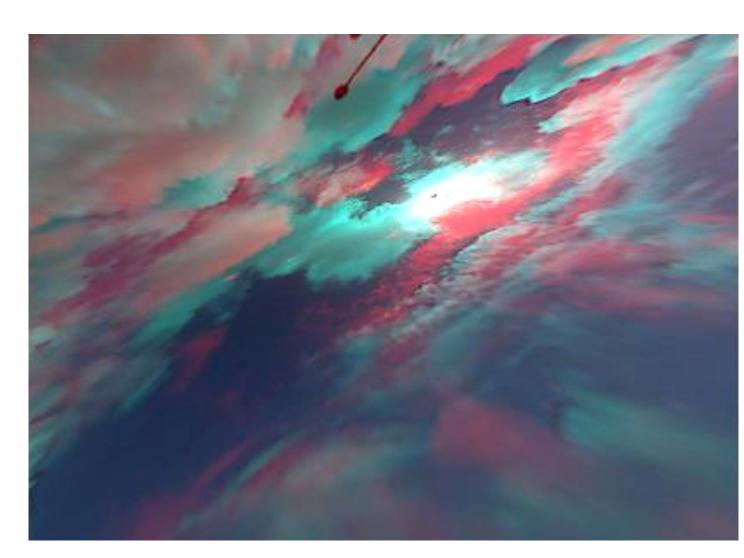


Image anaglyphe à regarder avec les lunettes 3D

www.oie.mines-paristech.fr

- Description 3D des nuages.
- Ombres portées des nuages sur les panneaux photovoltaïques.
- Perspectives : prédiction de l'ombre portée par la mise en place d'un algorithme de flot optique et prédiction de la production électrique.

^[2] Contact: Dominique DEMENGEL (dominique.demengel@edf.fr)

^[1] C. Gauchet, P. Blanc, B. Espinar, Surface solar irradiance estimation with low-cost fish-eye camera, in: COST WIRE Workshop on "Remote Sensing Measurements for Renewable Energy", DTU Risoe, DK, 2012: p. 4.